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Abstract
We study the phase behaviour of mixtures of colloidal spheres and polymers
that have an excluded-volume interaction dispersed in a (background) solvent
using the concept of free volume theory. The depletion layer thickness is
calculated from the negative adsorption of polymer segments around a sphere.
The correlation length and thermodynamic properties of the excluded-volume
interacting polymer chains in solution are taken into account by using results
from the renormalization group theory. For small polymer–colloid size ratios
the difference from an ideal description of the polymers is small,while for larger
size ratios the gas–liquid coexistence region shifts in the direction of higher
polymer concentrations and at the same time the liquid–crystal coexistence
region becomes more extended. Both the gas–liquid region and the gas–
liquid–crystal region become less extended. These features are compared to
experiment.

1. Introduction

Mixtures of colloids and non-adsorbing polymers display a rich phase behaviour, involving
colloidal ‘gas’ (poor in colloid, rich in polymer), colloidal ‘liquid’ (rich in colloid, poor in
polymer) and colloidal ‘crystal’ phases (rich in colloid,poor in polymer). This phase behaviour
finds its origin in the interaction between colloidal particles in a sea of polymers. Between
two particles the interaction was first described by Asakura and Oosawa [1, 2], Vrij [3] and
Joanny et al [4] who showed that there is an osmotic imbalance pushing the particles together
if they are within a certain distance of each other. Subsequent calculations for the phase
behaviour of colloidal spheres and polymers in a ‘background’ solvent based on perturbation
approaches were performed by Gast et al [5] and Vincent and co-workers [6, 7]. These
approaches successfully identified that the topology of the phase diagram depends on the
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polymer-to-colloid size ratio q = Rg/Rc, with Rg the polymer’s radius of gyration and Rc the
radius of the colloid. For a concise review of this early work, see [8]. In these approaches the
polymer partitioning between coexisting phases was not taken into account. This issue was
first addressed by Lekkerkerker [9] and developed in collaboration with Peter Pusey and co-
workers using the concept of free volume theory [10]. It is especially successful in explaining
why one should find a three-phase coexistence region instead of a three-phase coexistence
line. Extensive computer simulations [11–13] and exact solutions in one dimension [14–
16] validate the free volume approximation. It qualitatively and, for polymers much smaller
than the colloids, even quantitatively predicts the correct phase behaviour as can be seen
by comparison with experiments done in the laboratory of Peter Pusey [17–21]. The main
limitation of the original free volume approach is that it considers the polymers as ideal.
Recently, other theoretical approaches to describe colloid–polymer mixtures were explored,
aiming at a better description of the polymer [22–25] (for a review, see [26]). In this paper we
extend the free volume theory to describe the phase behaviour of mixtures of colloidal spheres
and polymer chains with excluded-volume interactions.

In section 2 we will briefly explain the thermodynamic framework needed to calculate
phase behaviour using the free volume theory. The theory for ideal polymers and colloidal
spheres of Lekkerkerker et al [10] and the resulting phase diagrams will be discussed in
section 3. In this approach polymers are modelled as penetrable hard spheres with a radius Rg .
Therefore, the polymers are ideal and the depletion layer thickness around a colloid � is equal
to Rg . However, when using the polymer density profile around a sphere [27, 28] and replacing
this profile by a step function, � becomes a function of the curvature q (=Rg/Rc) as will also
be shown in section 3. In section 4 we make the transition from ideal polymers to polymers
with excluded-volume interactions using results from renormalization group (RG) theory [29].
We will use an expression from Hanke et al [30] to incorporate curvature effects. In section 5
the resulting phase diagrams are presented and compared to the original free volume theory
and to experimental phase diagrams. We will summarize and conclude with our findings in
section 6.

2. Free volume theory

The natural thermodynamic potential to use when calculating the phase behaviour of colloid–
polymer mixtures is the semi-grand canonical potential [9]. The colloids are treated
canonically, while the polymers are treated grand canonically as is schematically shown
in figure 1. The solvent is treated as background. The semi-grand canonical potential
�(N, T, V , µp) can be written as

�(N, V , T, µp) = F(N, V , T ) −
∫ µr

p

−∞
Np dµr ′

p , (2.1)

in which F(N, V , T ) is the Helmholtz free energy of a pure hard-sphere dispersion and depends
on the number of colloidal particles N , the system volume V and the temperature T . The
reservoir is filled with polymers up to a final chemical potential of polymers µr

p, resulting in
Np polymers being pushed into the system. To calculate Np as a function of µr

p the following
assumption is made:

Np(µ
r
p) = nr

p〈V f ree〉0 = nr
pαV , (2.2)

saying that Np is equal to the number density of polymers in the reservoir with nr
p times the

free volume of the unperturbed system 〈V f ree〉0. This free volume is equal to the free volume
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reservoirsystem

N,V,T,µp

Figure 1. A schematic representation of the semi-grand canonical scheme. The reservoir is filled
with polymer and connected to the system via a semi-permeable membrane. The system contains
both polymers and colloids and its free volume is the total system volume V minus the volume of
the depleted zones. Note that the centres of mass of the polymers cannot penetrate the depletion
zones.

fraction α times the system volume V . The free volume fraction can be found from scaled
particle theory [10, 31] and reads

α = (1 − φc) exp[−(Ad + Bd2 + Cd3)], (2.3)

with d = φc/(1 − φc) and the quantities A, B and C functions of the depletion thickness (in
this approach a step function with thickness �) divided by Rc:

A = 3
�

Rc
+ 3

(
�

Rc

)2

+

(
�

Rc

)3

B = 9

2

(
�

Rc

)2

+ 2

(
�

Rc

)3

C = 3

(
�

Rc

)3

.

(2.4)

The integration over µr
p in (2.1) can be replaced with an integration over nr

p by applying
the Gibbs–Duhem relation:

dµr
p = 1

nr
p

d� = 1

nr
p

(
∂�

∂nr
p

)
T

dnr
p. (2.5)

Here � is the osmotic pressure of the polymers. Finally, it is convenient to rewrite (2.1) in a
dimensionless form:

ω̃ = f̃ −
∫ φr

p

0
α

(
∂�̃

∂φr ′
p

)
T

dφr ′
p , (2.6)

with ω̃ = �vc/kB T V (with kB the Boltzmann constant and vc = 4
3π R3

c the volume of

a colloid), f̃ = Fvc/kB T V and �̃ = �vc/kB T the dimensionless osmotic pressure of
the polymer solution. Furthermore, φr

p is the polymer volume fraction (φr
p = nr

pvp with

vp = 4
3 π R3

g). Equation (2.6) is the central equation in this thermodynamic scheme. The
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coexisting phases follow from the conditions (common-tangent procedure)(
∂ω̃1

∂φc1

)
φr

p

= µ̃1(φ
r
p) = µ̃2(φ

r
p) =

(
∂ω̃2

∂φc2

)
φr

p

ω̃1 −
(

∂ω̃1

∂φc1

)
φr

p

φc1 = P̃1(φ
r
p) = P̃2(φ

r
p) = ω̃2 −

(
∂ω̃2

∂φc1

)
φr

p

φc2

(2.7)

Throughout this paper we use a very accurate expression for the free energy of the pure
hard-sphere system f̃ following from the Carnahan–Starling equation of state [32]:

f̃ = φc ln φc +
4φ2

c − 3φ3
c

(1 − φc)2
− φc. (2.8)

This can be used to describe both gas (G) and liquid (L) phases as well as the fluid (F) phase.
To describe the crystalline phase (C) we make use of a reference free energy obtained from
computer simulations [33], from which the crystalline free energy f̃c follows as

f̃c = −P̃c + φcµ̃c = − 3φc

1 − φc/φcp
+ φc

(
2.1306 +

3

1 − φc/φcp
+ 3 ln

[
φc

1 − φc/φcp

])
(2.9)

with the closest-packed volume fraction φcp = π
√

2/6. Except for the thermodynamic
properties of the polymer solution and the depletion layer thickness, we have all the ingredients
to calculate the binodals using (2.7).

3. Ideal polymers

The osmotic pressure of ideal polymers is given by Van’t Hoff’s law � = n pkB T and the
osmotic compressibility ∂�̃/∂φr

p is then simply 1/q3. The integral in (2.6) now becomes

∫ φr
p

0
α

(
∂�̃

∂φr ′
p

)
T

dφr ′
p = α

q3
φr

p. (3.1)

If � is known we have all the ingredients for calculating the phase behaviour. Lekkerkerker
et al [10] used � = Rg and thereby implicitly treated the polymers as penetrable hard spheres
with effective radius Rg . In that case �/Rc becomes q in (2.4).

Although the typical length scale of an ideal polymer solution in the bulk is indeed the
radius of gyration, the typical length scale near a wall or spherical colloidal surface is different.
The depletion thickness near an interface can be calculated if the polymer density profile is
known. The density profile is found by solving the Edwards diffusion equation [34, 35]. Near
a single wall, this profile was calculated by Eisenriegler [36], leading to � = 2Rg/

√
π . The

polymer density profile around a sphere was derived by Taniguchi et al [27] and independently
by Eisenriegler et al [28]. In the appendix the depletion thickness as a function of curvature
is derived for ideal polymers resulting in (A.4)

�

Rc
=

(
1 +

6√
π

q + 3q2

)1/3

− 1. (3.2)

This expression for �/Rc is used in (2.4). In the limit of q → 0, �/Rc becomes 2q/
√

π

agreeing with the flat-wall case and for larger q , �/Rc decreases. Curvature effects are now
included in the free volume approach. The resulting phase diagrams are presented in figure 2.
Clearly, the effect of curvature on the general phase behaviour is small in the ideal case, except
for very large q where � � Rg .
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Figure 2. (a)–(c) Phase diagrams for polymer–colloid mixtures with different polymer–colloid
size ratios (respectively, q = 0.1, 0.6, 1.0) in the reservoir concentration. In (d) the curvature
dependence of �/Rg as in (3.2) is plotted. Dashed curves follow from the theory described in [10]
(� = Rg), while solid curves are the result when using (3.2). Dotted curves denote triple points
(gas–liquid–crystal coexistence) and open circles denote critical points. G , L , F and C denote
colloidal gas, liquid, fluid and crystal phases respectively.

4. Polymers with excluded-volume interactions

In good solvents excluded-volume interactions between polymer segments have to be taken
into account in order to describe the thermodynamics of the polymers in solution properly.
Thus, we first need an expression for the osmotic compressibility. This can be found from
RG theory [29] for polymers in the full excluded-volume limit and is in dimensionless form
equal to

(
∂�̃

∂φr
p

)
= 1

q3

(
1 + 2.629φr

p

(
1 + 3.251φr

p + 4.151(φr
p)

2

1 + 1.480φr
p

)0.309)
. (4.1)

Secondly, curvature effects have to be incorporated. Hanke et al [30] calculated the insertion
energy to place one colloidal sphere in a sea of excluded-volume polymers. This energy is
equal to the total number of polymers depleted from a certain region and is analysed in terms of
flat and curvature terms. We can calculate a depletion thickness from this number by making
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Figure 3. (a) Curvature dependence of �/Rg and (b) concentration dependence of �/Rc

following (4.2) (full curves) with modifications explained in the text and for the ideal case with
� = Rg (dashed lines). The concentration dependence is shown for three different polymer–colloid
size ratios; from top to bottom curves: q = 1.0, 0.6 and 0.1.

use of a step function and �/Rc becomes

�

Rc
=

(
1 + 3a

(
Rg

Rc

)
+ 3b

(
Rg

Rc

)2

− 3c

(
Rg

Rc

)3)1/3

− 1, (4.2)

with

a = 2√
π

[
1 − 1

4

(
1 − 3

2
ln 2 − π

2
+

π√
3

)]
≈ 1.0710

b = 1 − 5π

8
+

17

36
+

π
√

3

4
≈ 0.8691

c = 1

3
√

π

(
1673π

48
− 551

15
− 40π√

3

)
≈ 0.0399.

Note that (4.2) is the RG theory result up to third order in curvature and hence applicable
for small q . To incorporate the polymer concentration dependence we replace Rg with the
correlation length in bulk which is in line with the work of Joanny et al [4]. Expressions for the
bulk correlation length as well as the osmotic compressibility are taken from [29] and we have
all the ingredients for (2.6). In figure 3(a) we show the curvature dependence of �/Rg, which
clearly deviates from the standard ideal case with � = Rg and in figure 3(b) the concentration
dependence of �/Rc is plotted. The depletion thickness decreases strongly as a function of
the polymer concentration.

5. Results

In this section we present phase diagrams obtained with the proposed theory for mixtures
of colloidal hard spheres and polymer chains with excluded-volume interactions between the
segments in a common solvent. The results are compared with those for mixtures of ideal
polymers mixed with colloidal spheres as described in [10] and with experimental phase
diagrams. In figure 4 we present phase diagrams for three different polymer–colloid size
ratios. For q = 0.1 (figure 4(a)) the difference between describing the polymers as ideal
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Figure 4. (a)–(c) Phase diagrams for polymer–colloid mixtures with different polymer–colloid size
ratios (respectively, q = 0.1, 0.6, 1.0) in reservoir concentration. Dashed curves follow from the
theory described in [10] (� = Rg ), while solid curves are valid for mixtures of excluded-volume
polymers and colloids and follow from (4.2) with modifications explained in the text. (d) The phase
diagram in the system polymer concentration for q = 0.6. The light area is the three-phase region
for ideal polymers and the dark area that for excluded-volume polymers. Dotted curves denote
triple points (gas–liquid–crystal coexistence) and open circles depict critical points.

following [10] or with excluded-volume interactions is clearly very small, while the difference
is much larger for q = 0.6 and 1.0 (figures 4(b) and (c)). Since the depletion thickness �

becomes smaller than Rg if q > 0.30 (figure 3(a)) and because� decreases rapidly as a function
of polymer concentration (figure 3(b)), more polymer is needed for gas–liquid phase separation
to occur for q = 0.6 and 1.0. Furthermore, the gas–liquid region becomes quickly metastable
with respect to gas–crystal coexistence due to the strongly rising osmotic compressibility (4.1)
compared to the ideal case. Related to this, gas–liquid coexistence first becomes stable for
q = 0.48, while this is at q = 0.33 for ideal polymers. In figure 4(d) we make the transition
to actual polymer concentrations for q = 0.6 by multiplying the reservoir polymer volume
fraction φr

p with the free volume fraction in one phase α(φc1): φp1 = φr
pα(φc1). Here, we see

that the liquid–crystal region is much larger than in the ideal case. In addition, the three-phase
coexistence region is shifted upwards and becomes slightly smaller.

In figure 5 we make the comparison with experimental phase diagrams. Ilett et al
constructed phase diagrams for mixtures of polymethylmethacrylate (PMMA) colloidal
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Figure 5. Comparison of experiment with the ideal theory described in [10] (dashed curves) and
the model proposed here for excluded-volume polymers (full curves) with experimental phase
diagrams for (a) q = 0.57 from [19], (b) q = 0.667 from [37] and (c) q = 1.08 from [38]. The
open circles denote critical points, while the open diamonds are the experimental binodal points in
(b) and (c). The symbols in (a) denote the following: filled circles: fluid; diamonds: gas plus liquid;
crosses: gas plus liquid plus crystal; plus signs: liquid plus crystal; squares: gas plus crystal. The
light area is the three-phase region for ideal polymers and the dark area that for excluded-volume
polymers.

spheres and polystyrene polymer [19]. In figure 5(a) we compare their constructed phase
diagram for Rc = 228 nm and Rg = 130 nm (q = 0.57) with the original free volume theory
and with the extension described in section 4 to include excluded-volume polymers. Although
the gas–liquid region is underestimated by the extended theory, both the liquid–crystal as
well as the three-phase region are much better predicted. More recently, Ramakrishnan
et al [37] measured the binodal for mixtures of colloidal silica spheres coated with stearyl
alcohol (Rc = 50 nm) and polystyrene polymer in toluene. Here, we compare the result
with polystyrene with a molar mass of 5.5 × 105 g mol−1 (Rg = 33.37 nm) resulting in a
size ratio q = 0.667 in figure 5(b). The open diamonds are the experimental points. The
original theory clearly predicts polymer concentrations that are too low at the binodal while
the present theory (full line) overpredicts the required polymer concentration at the binodal.
In figure 5(c) we compare with the experimental phase line of mixtures of small stearyl-coated
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silica spheres (Rc = 13 nm) and polydimethylsiloxane polymer (Rg = 14 nm) in cyclohexane
with a size ratio q = 1.08. De Hoog and Lekkerkerker [38] measured the binodal in great
detail by following the method of Bodnar and Oosterbaan [39]. The dashed line is the ideal
polymer theory result and again the new theory (full curve) predicts phase separation to occur
at much higher polymer concentration. This full curve is partially dotted where the gas–liquid
phase separation is no longer stable with respect to gas–crystal phase separation. However,
no gas–crystal phase coexistence was observed experimentally possibly due to suppression
by sphere polydispersity which is not accounted for in the present theory. Furthermore, the
present theory predicts too high polymer concentration above a certain colloid volume fraction,
the reason for which is unknown.

6. Discussion and conclusions

The effects of curvature and of excluded-volume polymers on the phase behaviour of colloid–
polymer mixtures have been taken into account by extending the free volume theory [10]. For
ideal polymers, curvature effects are included by using the polymer density profile [27, 28],
which has a small effect on the general phase behaviour. For excluded-volume polymers results
from RG theory [29, 30] were used and in that case both the description with excluded-volume
polymers and the curvature play a role. For small size ratios (as shown with q = 0.1) the
depletion thickness is approximately Rg ; curvature effects are weak and the concentration is
not yet sufficiently large to decrease the correlation length significantly with respect to Rg .
For q = 0.6 and 1.0 the curvature effects are stronger and in particular the correlation length
has dropped significantly at the polymer concentrations where the system becomes unstable.
Thus, the gas–liquid phase coexistence will shift to larger polymer concentrations for excluded-
volume polymers as compared to ideal polymers. At the same time the liquid–crystal region
becomes larger while the three-phase coexistence region becomes less extended.

In comparison with experiment we see that the ideal polymer theory predicts too low
polymer concentrations for gas–liquid phase separation to occur and that our new model
predicts too high polymer concentrations, except for q = 1.08 [38]. Although the phase
diagram for this colloid–polymer mixture was carefully determined, both colloidal spheres and
polymers are rather polydisperse, the effects of which are unclear. Liquid–crystal coexistence,
clearly present in experiment for q = 0.57, is almost absent in the ideal polymer theory
(a discrepancy of about a factor of 250 [21]). A significantly more accurate description
of the liquid–crystal coexistence region is perhaps one of the major achievements of the
present theory. We conclude that modifying the free volume theory to incorporate excluded-
volume polymers is rather straightforward and results in a better description of some of the
characteristic features in the experimental phase diagrams. More sophisticated theories are,
however, required to obtain a more complete quantitative agreement with experiments.

Appendix. Depletion thickness for ideal polymers

Placing a colloidal sphere in a sea of polymers depletes Ndep
p polymers from a certain volume.

This number is equal to the polymer number density n p times the volume that is depleted
of polymers, which is the colloid volume vc plus a region around the colloid found from the
polymer concentration profile f (x) = n(x)/nb:

Ndep
p = n pvc + n p

∫ ∞

Rc

4πr2(1 − f (x)) dx . (A.1)
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The profile [27, 28] gives the local polymer segment density n(x) at a distance x from the
colloidal surface divided by the polymer bulk segment density nb and has the following form:

f (x) =
[

Rc

Rc + x

]2[(
x

Rc

)2

+
2x

Rc

(
erf(z) − 2z2[1 − erf(z)] +

2√
π

z exp(−z2)

)

+ 2 erf(z) − erf(2z) +
4z√
π

[exp(−z2) − exp(−4z2)]

+ 8z2[ 1
2 − erf(2z) + 1

2 erf(z)]

]
, (A.2)

where z = x/2Rg . This polymer profile can be replaced by a step function and doing so
defines a depletion thickness �, which can be found by solving (A.3) for �:

n pvc + n p

∫ ∞

Rc

4πr2(1 − f (x)) dx = n p
4π

3
(Rc + �)3. (A.3)

The resulting curvature dependence of �(q) becomes after doing the integration

�

Rc
=

(
1 +

6q√
π

+ 3q2

)1/3

− 1. (A.4)
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